
Constructor and Destructor
Constructors are special class functions which performs initialization of every object.
The Compiler calls the Constructor whenever an object is created. Constructors
initialize values to object members after storage is allocated to the object.

Whereas, Destructor on the other hand is used to destroy the class object.

Let's start with Constructors first, following is the syntax of defining a constructor
function in a class:

class A

{

 public:

 int x;

 // constructor

 A()

 {

 // object initialization

 }

};

While defining a contructor you must remeber that the name of constructor will be
same as the name of the class, and contructors will never have a return type.

Constructors can be defined either inside the class definition or outside class
definition using class name and scope resolution :: operator.

class A

{

 public:

 int i;

 A(); // constructor declared

};

// constructor definition

A::A()

{

 i = 1;

}

Types of Constructors in C++
Constructors are of three types:

1. Default Constructor

2. Parametrized Constructor

3. Copy COnstructor

Default Constructors

Default constructor is the constructor which doesn't take any argument. It has no
parameter.

Syntax:

class_name(parameter1, parameter2, ...)

{

 // constructor Definition

}

For example:

class Cube

{

 public:

 int side;

 Cube()

 {

 side = 10;

 }

};

int main()

{

 Cube c;

 cout << c.side;

}

Output:

10

In this case, as soon as the object is created the constructor is called which
initializes its data members.

A default constructor is so important for initialization of object members, that even if
we do not define a constructor explicitly, the compiler will provide a default
constructor implicitly.

class Cube

{

 public:

 int side;

};

int main()

{

 Cube c;

 cout << c.side;

}

Output:

0 or any random value

In this case, default constructor provided by the compiler will be called which will
initialize the object data members to default value, that will be 0 or any random
integer value in this case.

Parameterized Constructors

These are the constructors with parameter. Using this Constructor you can provide
different values to data members of different objects, by passing the appropriate
values as argument.

For example:

class Cube

{

 public:

 int side;

 Cube(int x)

 {

 side=x;

 }

};

int main()

{

 Cube c1(10);

 Cube c2(20);

 Cube c3(30);

 cout << c1.side;

 cout << c2.side;

 cout << c3.side;

}

Output:

10

20

30

By using parameterized construcor in above case, we have initialized 3 objects with
user defined values. We can have any number of parameters in a constructor.

Copy Constructors

These are special type of Constructors which takes an object as argument, and is
used to copy values of data members of one object into other object.

Constructor Overloading in C++
Just like other member functions, constructors can also be overloaded. Infact when
you have both default and parameterized constructors defined in your class you are
having Overloaded Constructors, one with no parameter and other with parameter.

You can have any number of Constructors in a class that differ in parameter list.

class Student

{

 public:

 int rollno;

 string name;

 // first constructor

 Student(int x)

 {

 rollno = x;

 name = "None";

 }

 // second constructor

 Student(int x, string str)

 {

 rollno = x;

 name = str;

 }

};

int main()

{

 // student A initialized with roll no 10 and name None

 Student A(10);

 // student B initialized with roll no 11 and name John

 Student B(11, "John");

}

In above case we have defined two constructors with different parameters, hence
overloading the constructors.

One more important thing, if you define any constructor explicitly, then the compiler
will not provide default constructor and you will have to define it yourself.

In the above case if we write Student S; in main(), it will lead to a compile time
error, because we haven't defined default constructor, and compiler will not provide
its default constructor because we have defined other parameterized constructors.

Destructors in C++
Destructor is a special class function which destroys the object as soon as the scope
of object ends. The destructor is called automatically by the compiler when the object
goes out of scope.

The syntax for destructor is same as that for the constructor, the class name is used
for the name of destructor, with a tilde ~ sign as prefix to it.

class A

{

 public:

 // defining destructor for class

 ~A()

 {

 // statement

 }

};

Destructors will never have any arguments.

Example to see how Constructor and Destructor are
called

Below we have a simple class A with a constructor and destructor. We will create
object of the class and see when a constructor is called and when a destructor gets
called.

class A

{

 // constructor

 A()

 {

 cout << "Constructor called";

 }

 // destructor

 ~A()

 {

 cout << "Destructor called";

 }

};

int main()

{

 A obj1; // Constructor Called

 int x = 1

 if(x)

 {

 A obj2; // Constructor Called

 } // Destructor Called for obj2

} // Destructor called for obj1

Output:

Constructor called

Constructor called

Destructor called

Destructor called

